首页    期刊浏览 2022年06月29日 星期三
登录注册

文章基本信息

  • 标题:A Numerical Test of Padé Approximation for Some Functions with Singularity
  • 本地全文:下载
  • 作者:Hiroaki S. Yamada ; Kensuke S. Ikeda
  • 期刊名称:International Journal of Computational Mathematics
  • 印刷版ISSN:2356-797X
  • 出版年度:2014
  • 卷号:2014
  • DOI:10.1155/2014/587430
  • 出版社:Hindawi Publishing Corporation
  • 摘要:The aim of this study is to examine some numerical tests of Padé approximation for some typical functions with singularities such as simple pole, essential singularity, brunch cut, and natural boundary. As pointed out by Baker, it was shown that the simple pole and the essential singularity can be characterized by the poles of the Padé approximation. However, it was not fully clear how the Padé approximation works for the functions with the branch cut or the natural boundary. In the present paper, it is shown that the poles and zeros of the Padé approximated functions are alternately lined along the branch cut if the test function has branch cut, and poles are also distributed around the natural boundary for some lacunary power series and random power series which rigorously have a natural boundary on the unit circle. On the other hand, Froissart doublets due to numerical errors and/or external noise also appear around the unit circle in the Padé approximation. It is also shown that the residue calculus for the Padé approximated functions can be used to confirm the numerical accuracy of the Padé approximation and quasianalyticity of the random power series.
国家哲学社会科学文献中心版权所有